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Synopsis

One of the most readily available characteristics of a polymer sample is its intrinsic viscosity in
a particular solvent. This datum can often be estimated reasonably from a single relative viscosity
measurement. A number of theories permit the calculation of the second virial coefficient of a
polymer/solvent mixture given the intrinsic viscosity and polymer molecular weight. The intrinsic
viscosity of the polymer under theta conditions is also needed, but this can be estimated, if necessary,
from the molecular weight. This article compares the efficiencies of various alternative models for
the prediction of second virial coefficients of a series of polymers and solvents. The most effective
technique for this purpose first calculates the concentration-dependent equivalent hydrodynamic
volume of a solvated polymer coil. This value is used with a primitive statistical mechanical theory
for virial coefficients of hard-sphere suspensions to calculate the osmotic pressure or turbidity of
the polymer solution. These simulated experimental values are fitted with a least-squares line as
in the real experiment, and the second virial coefficient is derived from the slope. The computations
are relatively simple; the average deviation between observed and predicted virial coefficients was
less than 16% for a variety of polymer types, molecular weights, and solvents.

INTRODUCTION

A polymer solution theory can be assessed by its ability to predict experimental
results. A group of theories has evolved from consideration of the excluded
volume effect. These are now often referred to as the two-parameter theory.!
Two-parameter theories relate dilute polymer solution properties to two basic
parameters, i.e., the mean-square end-to-end distance (r )¢ of a chain in the theta
state and the excluded volume parameter z.

The Yamakawa theory? is an example of a two-parameter theory. Recently,
Mahabadi and Rudin® have shown that this model can be used to explain the
change in elution volumes with concentrations of polymer solutions in gel per-
meation chromatography (GPC). In our experience, the Yamakawa theory
appears to give the best agreement with experimental results when compared
to the other two-parameter theories.

In a different approach, Rudin®4 has proposed a model to account for the
concentration dependence of equivalent hydrodynamic volumes of polymer
solutions. Although it is simple in derivation, this theory has been shown to be
capable of accounting for a modest variety of polymer solution properties. It
has given correct estimations of radii of gyration in solution,* corrected for
concentration effects in GPC,34 explained peak shifts in GPC of polymer mix-
tures,? and predicted osmotic pressures of polymer solutions.$

The second virial coefficient is a very important characteristic of polymer
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solutions since its magnitude reflects the solvent strength for the particular
polymer. This article considers the prediction of second virial coefficients by
several two-parameter theories and the Rudin model. There are many variations
of two-parameter theories. We have selected three which are self-consistent
combinations for the interpenetration function ¢ and the parameter z.

The main objective in this article is to be able to predict second virial coeffi-
cients from readily available parameters. The intrinsic viscosity is a suitable
parameter for predictive purposes, since it is easily measured and can be ap-
proximated quite well from a single relative viscosity measurement.” Few at-
tempts have been made to date to predict second virial coefficients from intrinsic
viscosity parameters, so far as we know, although all the models considered here
are capable of doing so. The use of any model in this context is justified solely
by its ability to predict second virial coefficients from intrinsic viscosity input
data. We are not concerned with any other potential shortcomings or virtues
of the particular theory.

THEORY

A method for predicting second virial coefficients has been described in a
companion article which focussed on the prediction of osmotic pressures of
polymer solutions.® Basically, this model simulates the appropriate osmotic
pressure experimental data points from

1
¢ M. (v
in which 7 is the ognotic pressure of a solution of polymer with number average
molecular weight M,, and concentration ¢, and R and T have their usual mean-
ings. The corresponding form for simulation of light scattering results is

He | 1

T w

=—— (1 + A}Myc)? (@)
where H is an optical constant for the particular solution and apparatus and 7
is the turbidity. In egs. (1) and (2), A3 is given by

A* — ]_67I'N()[T]] (1 - m)
27 M(9.3 X 1024 + 4w Noc([n] — [n]s)) il

where [7] is the intrinsic viscosity (cm3/g) of the polymer in the given solvent,
[n]e is its intrinsic viscosity under theta conditions, ¢ is the concentration (g/cm?),
Ny is Avogadro’s constant, and M is the average polymer molecular weight.

Equation (1) or (2) can be used to predict reduced osmotic pressure (w/c) or
turbidity (He/7) data as a function of ¢c. These results are calculated up to a
concentration = 0.5¢,, where

(3)

_9.3Xx10%
* 4wNo[nls

and c, is the concentration at which the dimensions of the equivalent hydrody-
namic sphere are calculated to have shrunk to their theta condition values.34
The limit of 0.5¢, for these calculations is arbitrary. This corresponds more or
less to the highest concentration which might be used in the actual experiments
which this model seeks to simulate.

(4)
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The ostensible virial coefficients As in egs. (1) and (2) are concentration de-
pendent because they are related to the radius of the equivalent hydrodynamic
sphere which decreases in size with increasing concentration in the concentration
region 0 < ¢ < ¢,. To obtain a concentration-independent second virial coef-
ficient, Ao, from this model, one plots (7/c)'/2 [eq. (1)] or (He/7)V2 [eq. (2)]
against ¢ for 0 < ¢ < 0.5¢, and fits a least-squares line to the results to derive A¢
from the slope.

This theory differs from the others considered here in that it involves a direct
simulation of raw experimental data points which are then handled exactly as
in the real experiment to predict the second virial coefficient of the particular
polymer solution.® It will be referred to below as the KR model.

In the two-parameter theory, the second virial coefficient can be written
as!

<SZ)3/2 .

As = 432N, Ye 1 (5)
in which
¥ = zho(2) (6)
z=z/al (7N
and
a2 = (82)/(82), (8)

In the above expressions, (S2) is the mean square radius of gyration and (S2)q
is the value of {(S2) under theta conditions.

Various forms of the interpenetration function ¢ have been developed. An
appropriate expression for z must be selected for each function of ¥ such that
their derivations are based on the same footing in terms of intramolecular and
intermolecular theories of interaction. Three such combinations suggested by
Yamakawa! are used in the present study. These are:

Combination 1:

Flory-Krigbaum—Orofino theory® of ¢ (FKO):

_In (1 +2.302)

4 2.30 )
Flory theory of ay:

ol — ad =260z (10)

Combination 2:
Modified Flory—Krigbaum-Orofino theory!? of y (MFKO):
In (1 + 5.732)

A—rr (1
Modified Flory theory!! of «:

al - ad =1.2762 (12)

Combination 3:
Kurata-Yamakawa theory!? of ¥ (KY):

Y = 0.547[1 — (1 + 3.903z)0-4683] (13)

Yamakawa-Tanaka theory!3 of «:



3586 KOK AND RUDIN

a? = 0.541 + 0.459(1 + 6.04z)046 (14)

In order to use these theories for the estimation of A; from intrinsic viscosity
data, it is necessary to make use of equations which do not involve the various
radii of gyration. The following relationships of Flory and Fox1415 are useful
for this purpose:

243/2
[n] = 6%/2%, (SM> (15)
and
ad=ad= [Lrﬁ]; (16)

The proportionality constant ®; is considered below. It appears in all the
two-parameter theories and is included in the KR model as well.34 Elimination
of (S2)3/2in eq. (5) leads to

_ ax Ny
27 @329 oM

To estimate a value for A, ¥ must be caculated according to one of the above
theories. Taking combination 3 as an example, one first obtains «; from eq. (16).
Substitution of this value of ¢ into eq. (14) gives z, and Z is then obtained from
eq. (7). This is then used in eq. (13) to estimate ¥, and the latter value is finally
put into eq. (17) to calculate As.

Various theoretical values of ®, are available. However, a common value
which is often obtained is 2.5 X 1023 (with [#] and (S) in cgs units).1®

It is not our intention here to discuss the validity of the various theories of
polymer solution behavior. We are solely concerned with the efficiency of these
models in the prediction of second virial coefficients using intrinsic viscosities
as the input parameters. So far as we know, this application of these particular
theories has not been considered explicitly before.

(17)

RESULTS

The theories mentioned above were used to predict second virial coefficients
for about 140 polymer samples for which apparently reliable A, values were lo-
cated in the literature. In most cases, the samples selected were fractions with
fairly sharp molecular weight distributions. The intrinsic viscosities were cal-
culated from the appropriate Mark-Houwink relations:

[n] = KM} (18)
and
[nlo = KoM 35 (19)

The Mark—-Houwink constants used are listed in Table L

It is not possible to present A, values calculated from all three two-parameter
theories because of space limitations. Results from the Kurata—-Yamakawa (KY)
theory have been selected for illustrative purposes, while an overall comparison
with the other two models is given below.

Predicted and experimental As values obtained from the KY theory and the
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Fig. 1. Osmotic second virial coefficients for poly(methyl methacrylate) in acetone: (®) experi-
mentall’; (@) KR; (a) KY. The line joins experimental points.

KR model are presented in Figures 1-18. Most of the experimental values are
obtained from light scattering measurements. In general, the KR model provides
a somewhat better prediction than the KY theory, which estimates virial coef-
ficients which are too small in most cases. This is especially apparent for
lower-molecular-weight samples in Figures 2, 3, 6, 8-13, 16, and 17. In Figure
4, however, which deals with very high-molecular-weight polymers, the KY theory

log M

Fig. 2. Light scattering second virial coefficients for poly(methyl methacrylate) in butanone-2.22
Symbols same as in Fig. 1.

Apx10%cm3mot g2

! 1
4 4.5 5.0 5.5 6.0 6.5

fog M
Fig. 3. Light scattering second virial coefficients for poly(methyl methacrylate) in nitroethane.??
Symbols same as in Fig. 1. ’
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predictions are almost exact. Some of the predicted A values from the KR
theory are higher than experimental figures, as in Figures 14, 15, and 18.

ﬁw X 'O-G

Fig. 4. Light scattering second virial coefficients for high-molecular-weight polystyrenes in ben-
zene.3> Symbols same as in Fig. 1.

] I ] ] ] J
5.2 53 54 55 56 57 58
{og M

Fig. 5. Light scattering second virial coefficients of poly(butyl methacrylate-co-styrene) in bu-
tanone-2.24 Symbols same as in Fig. 1.

A, x 104 cm3 mot g2
(L)
I

2
44 48 5.2 5.6 6.0 6.2

log M

Fig. 6. Second virial coefficients from equilibrium sedimentation measurements3® for polystyrenes
in benzene. The predicted values are for light scattering. Symbols same as in Fig. 1.
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Fig. 7. Light scattering second virial coefficients for high-molecular-weight poly(a-methylstyrenes)
in toluene.?” Symbols same as in Fig. 1.

A further comparison of the two theories is provided by the osmotic pressure
data of Vink*0 for a variety of polymers in various solvents. These are generally
high-concentration experimental points. The KR theory produces a noticeably
better fit to the experimental A5 values than the KY model, as shown in Table
1L

A comparison of the predictions of the four methods is given in Figures 19-22
which show plots of predicted versus experimental As values for all the systems
examined. One can judge the merit of each prediction by noting the scatter about
the line drawn through the origin with a slope of unity. The two-parameter
theories appear to give poor predictions for experimental values of As greater
than 3 X 1074 ecm3-mol/g2 Generally speaking, this means that the two-pa-
rameter theories give good predictions only if the molecular weight is greater than
108,

A quantitative comparison of the above theories can be obtained by calculating
the average percentage error over the 140 experimental data examined. Data
in which the Mark-Houwink constants are not applicable because the polymer
has too low a molecular weight are not taken into consideration. An apparent
aberrant data point at log M = 5.7 in Figure 5 is also not used. The average
percentage error for each theory is calculated according to

A, x 10* em3 mot ¢2
w
“

1 L 1 ! | J
45 4.7 49 5.1 53 55 5.7 59

log M
Fig. 8. Light scattering second virial coefficients for lower-molecular-weight samples of poly(«a-
methylstyrene) in toluene.3” (The experimental A; for molecular weight 39,300 has not been used
because the original authors reported that its [#] was abnormal.) Symbols same as in Fig. 1.
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Fig. 9. Light scattering second virial coefficients for poly(vinyl acetate) in butanone-2.26 Symbols
same as in Fig. 1.

N |experimental — predicted|

=

1
average percentage error =

- X 100
experimental

N
where N is the number (= 140) of experimental data. (Note that only the ab-

solute deviations between predicted and experimental A, values are taken into
account).

(20)

49 5.1 53 55 57 59 6.1 63
fog M

Fig. 10. Light scattering second virial coefficients for poly(methyl methacrylate) in acetone.?’
Symbols same as in Fig. 1.
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log M
Fig. 11. Light scattering second virial coefficients for polystyrene in tetrahydrofuran.3® Symbols
same as in Fig. 1.
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| | | | I | 1 L
5.0 5.1 5.2 5.3 5.4 5.5 5.6 57 58

log M
Fig. 12. Light scattering second virial coefficients for poly(n-butyl methacrylate) in butanone-2.28
Symbols same as in Fig. 1.

The percent errors obtained for the KR, KY, FKO, and the MFKO theories
are 15.6, 25.8, 32.9, and 22.3, respectively.

DISCUSSION
The above results show that the KR model gives generally good predictions

of second virial coefficients for a variety of solvents and polymers with different
molecular weights. This is convenient, since the estimation of virial coefficients

involves simple mathematics in this case.

o
!

Ayx 10* em® mot g’2
- N
| I

I | ] | | i 1 _
50 5. 52 53 54 55 56 57 58

log M
Fig. 13. Light scattering second virial coefficients for poly(n-butyl methacrylate) in acetone.?8
Symbols same as in Fig. 1.
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54 53 55 57 59 61 €3 65
log M

Fig. 14. Light scattering second virial coefficients for polychloroprene in n-butyl acetate.®®
Symbols same as in Fig. 1.
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Ay x 10 cm®mo? g-2

] } ] | ] ] |-
S| 53 55 57 59 6.l 63 6.5
tog M

Fig. 15. Light scattering second virial coefficients for polychloroprene in carbon tetrachloride.®
Symbols same as in Fig. 1.

The comparisons in this article are based on the use of intrinsic viscosities as
input parameters. We are not concerned with the validity of egs. (15) and (16),
in general. However, since the two-parameter theories rely on these relation-

Az x 10*ecm3mot g2

| | I 1 | [ |
48 49 5.0 5.4 52 53 54 5.5
log M
Fig. 16. Light scattering second virial coefficients for poly(t-butyl acrylate) in butanone-2.3°
Symbols same as in Fig. 1.

Ay x10*cm>mot g2

1 ] 1 - | 1 J
52 5.4 5.6 5.8 6.0 6.2 6.4

log M
Fig. 17. Light scattering second virial coefficients for poly(p-methyl styrene) in toluene.3!
Symbols same as in Fig. 1.
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Ay x 10* cm® mot g2

53 55 57 59 67 63 65 67
log M

Fig. 18. Light scattering second virial coefficients for poly(p-chlorostyrene) in toluene (upper
line) and poly(p-bromostyrene) in toluene (lower line).32 Symbols same as in Fig. 1.

ships, one should examine the possible improvements in prediction of experi-
mental results when the parameters in these equations are adjusted judiciously.
Equation (15) can be changed by using a lower value of the Flory universal con-
stant ®g, as this will increase the value of A, estimated by the two-parameter
models. An alternative value for this constant is 5 = 2.1 X 1023 (in cgs units),
which is an experimental value often quoted for polydisperse polymers.33 Also,
the equality in eq. (16) can be replaced by*!

of = a2 (21)

We have made these substitutions into the calculations, and the average
percent errors are shown in Table III. Under the last conditions shown the
predictions of the KY theory are improved substantially, while those of the other
two-parameter models are not altered for the better. The original Rudin model*
used @y = 2.1 X 102! (actually, the Flory constant labelled ¢’ was set at 63/2&y).
Substitution of $¢ = 2.5 X 10?! into the formulas for hydrodynamic volume and
¢, produces A estimates with an average error of 16.8% for this model.

Krigbaum42 suggested the following empirical relation between A, and in-
trinsic viscosities:

134\ [ 3 \3/2({ P,
(M =Inls=3{ =] |~ |4M (22)
105] 27 N
TABLE 1I
Second Virial Coefficient from Vink’s Data0
Molecular Ap X 10* cm3-mol/g2 (osmotic)
Polymer/Solvent weight Experimental KR Theory KY Theory
PMMA/toluene 89,800 2.65 2.568 1.51
PMMA/acetone 95,600 2.42 2.45 1.39
PMMA/ethyl acetate 103,900 2.82 4.02 2.568
PMMA/butanone-2 100,800 3.24 3.01 1.78
PS/toluene 119,300 5.59 5.65 3.50

PS/butanone-2 550,000 1.41 1.60 0.90
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Fig. 19. Comparison of predicted and experimental A; values for all the systems studied. The
predicted values are from the FKO theory.

TABLE III
Average Percent Errors of Various Theories
P X 10723, Relation between Average % error
cgs units g and a, KR KY FKO MFKO
2.5 o = o, 16.8 25.8 32.9 22.3
2.1 as = a, 15.6 18.6 30.4 21.6
2.5 ad = o8 16.8 21.5 315 21.5
2.1 ol = a2 15.6 17.6 35.3 27.0

With the data uszd in this study eq. (22) gives an average percent error of 24.9%
with $; = 2.1 X 102! and an error of 19.2% with ®; = 2.5 X 102! (in cgs units).
This relation involves less computation than any of those considered here and
produces estimates in reasonable accord with experimental values.

The model described in this and the preceding article on this topic® appears

PREDICTED Ag x 10%cm® mot g2

1 I L | | | i
o] | 2 3 4 5 6 7 8

EXPERIMENTAL A,xI0%cm® mof g-2

Fig. 20. Comparison of predicted and experimental A, values for all the systems reported above.
The predicted values are from the MFKO theory.
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Fig. 21. Comparison of predicted and experimental A values for all the systems reported above.
The predicted values are from the KY theory.

to provide the best overall estimates of second virial coefficients for a variety of
polymer-solvent combinations (cf. Table II and Fig. 22). It consists essentially
of a calculation of a concentration-dependent equivalent hydrodynamic volume
for a solvated polymer coil and use of this volume in a primitive statistical me-
chanical theory for virial coefficients of hard sphere suspensions. It cannot
possibly accord with all the characteristics of real polymer solutions, but it can
nevertheless serve as a very useful predictive tool despite this limitation.

We have used a model proposed by one of us? to estimate the equivalent di-
mensions of polymers in solution. Any other theory which predicts these di-
mensions correctly could be employed equally as well to provide input data for
the statistical mechanical dilute suspension model.16 Thus, it is expected? that
replacement of Rudin’s model with Yamakawa’s expressions for the concen-
tration dependence of the sizes of equivalent hydrodynamic spheres? would
produce equivalent A5 values with egs. (1) or (2) and eq. (3).
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Fig. 22. Comparison of predicted and experimental Ao values for all the systems reported above.
The predicted values are from the KR theory given in this article.



SECOND VIRIAL COEFFICIENTS 3597

Since the present method simulates the results of the actual experiment from
which As is derived, it can also be used to predict colligative properties or tur-
bidity of polymer solutions, as outlined earlier® for osmotic pressure values in
particular.

This work was supported by the Natural Sciences and Engineering Research Council of
Canada.
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