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Synopsis 

One of the most readily available characteristics of a polymer sample is its intrinsic viscosity in 
a particular solvent. This datum can often be estimated reasonably from a single relative viscosity 
measurement. A number of theories permit the calculation of the second virial coefficient of a 
polymer/solvent mixture given the intrinsic viscosity and polymer molecular weight. The intrinsic 
viscoSity of the polymer under theta conditions is also needed, but this can be estimated, if necessary, 
from the molecular weight. This article compares the efficiencies of various alternative models for 
the prediction of second virial coefficients of a series of polymers and solvents. The most effective 
technique for this purpose first calculates the concentration-dependent equivalent hydrodynamic 
volume of a solvated polymer coil. This value is used with a primitive statistical mechanical theory 
for virial coefficients of hard-sphere suspensions to calculate the osmotic pressure or turbidity of 
the polymer solution. These simulated experimental values are fitted with a least-squares line as 
in the real experiment, and the second virial coefficient is derived from the slope. The computations 
are relatively simple; the average deviation between observed and predicted virial coefficients was 
less than 16% for a variety of polymer types, molecular weights, and solvents. 

INTRODUCTION 

A polymer solution theory can be assessed by its ability to predict experimental 
results. A group of theories has evolved from consideration of the excluded 
volume effect. These are now often referred to as the two-parameter theory.' 
Two-parameter theories relate dilute polymer solution properties to two basic 
parameters, i.e., the mean-square end-to-end distance ( r ) o  of a chain in the theta 
state and the excluded volume parameter z .  

The Yamakawa theory2 is an example of a two-parameter theory. Recently, 
Mahabadi and Rudin3 have shown that this model can be used to explain the 
change in elution volumes with concentrations of polymer solutions in gel per- 
meation chromatography (GPC). In our experience, the Yamakawa theory 
appears to give the best agreement with experimental results when compared 
to the other two-parameter theories. 

In a different approach, Rudin3v4 has proposed a model to account for the 
concentration dependence of equivalent hydrodynamic volumes of polymer 
solutions. Although it is simple in derivation, this theory has been shown to be 
capable of accounting for a modest variety of polymer solution properties. It 
has given correct estimations of radii of gyration in solution: corrected for 
concentration effects in GPC,3,4 explained peak shifts in GPC of polymer mix- 
t u r e ~ , ~  and predicted osmotic pressures of polymer solutions.6 

The second virial coefficient is a very important characteristic of polymer 
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solutions since its magnitude reflects the solvent strength for the particular 
polymer. This article considers the prediction of second virial coefficients by 
several two-parameter theories and the Rudin model. There are many variations 
of two-parameter theories. We have selected three which are self-consistent 
combinations for the interpenetration function Ic/ and the parameter z .  

The main objective in this article is to be able to predict second virial coeffi- 
cients from readily available parameters. The intrinsic viscosity is a suitable 
parameter for predictive purposes, since it is easily measured and can be ap- 
proximated quite well from a single relative viscosity mea~urernent.~ Few at- 
tempts have been made to date to predict second virial coefficients from intrinsic 
viscosity parameters, so far as we know, although all the models considered here 
are capable of doing so. The use of any model in this context is justified solely 
by its ability to predict second virial coefficients from intrinsic viscosity input 
data. We are not concerned with any other potential shortcomings or virtues 
of the particular theory. 

THEORY 

A method for predicting second virial coefficients has been described in a 
companion article which focussed on the prediction of osmotic pressures of 
polymer solutions.6 Basically, this model simulates the appropriate osmotic 
pressure experimental data points from 

T RT 

in which 7r is the osmotic pressure of a solution of polymer with number average 
molecular weight an and concentration c, and R and T have their usual mean- 
ings. The corresponding form for simulation of light scattering results is 

- (1+A;Mwc)2 
7- XIw 

where H is an optical constant for the particular solution and apparatus and r 
is the turbidity. In eqs. (1) and (2), AH is given by 

where [q] is the intrinsic viscosity (cm3/g) of the polymer in the given solvent, 
[&I is its intrinsic viscosity under theta conditions, c is the concentration (g/cm3), 
No is Avogadro’s constant, and M is the average polymer molecular weight. 

Equation (1) or (2) can be used to predict reduced osmotic pressure (a/c) or 
turbidity (Hc/r) data as a function of c.  These results are calculated up to a 
concentration = 0 . 5 ~ ~ ~  where 

9.3 x 1024 
47rN0 hl c, = (4) 

and c, is the concentration at  which the dimensions of the equivalent hydrody- 
namic sphere are calculated to have shrunk to their theta condition  value^.^.^ 
The limit of 0 . 5 ~ ~  for these calculations is arbitrary. This corresponds more or 
less to the highest concentration which might be used in the actual experiments 
which this model seeks to simulate. 
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The ostensible virial coefficients A ;  in eqs. (1) and (2) are concentration de- 
pendent because they are related to the radius of the equivalent hydrodynamic 
sphere which decreases in size with increasing concentration in the concentration 
region 0 I c 5 c,. To obtain a concentration-independent second virial coef- 
ficient, Az, from this model, one plots ( a / ~ ) l / ~  [eq. (l)] or ( H c / T ) ~ / ~  [eq. (2)] 
against c for 0 I c I 0 . 5 ~ ~  and fits a least-squares line to the results to derive A2 
from the slope. 

This theory differs from the others considered here in that it involves a direct 
simulation of raw experimental data points which are then handled exactly as 
in the real experiment to predict the second virial coefficient of the particular 
polymer solution.6 It will be referred to below as the KR model. 

In the two-parameter theory, the second virial coefficient can be written 
as' 

in which 

1c/ = ZhO(2) (6) 

2 = z / a :  (7) 

a: = (S2) / (S2)0  (8) 

and 

In the above expressions, (S2)  is the mean square radius of gyration and (S2)o 
is the value of ( S2)  under theta conditions. 

Various forms of the interpenetration function $ have been developed. An 
appropriate expression for z must be selected for each function of 1c/ such that 
their derivations are based on the same footing in terms of intramolecular and 
intermolecular theories of interaction. Three such combinations suggested by 
Yamakawal are used in the present study. These are: 

Flory-Krigbaum-Orofino theory8 of 1c/ (FKO): 
Combination 1: 

(9) 
In (1 + 2.302) ' = 2.30 

Flory theory of a,: 
a," - a: = 2.602 (10) 

Combination 2: 
Modified Flory-Krigbaum-Orofino theoryl0 of 1c/ (MFKO): 

(11) 
In (1 + 5.732) 

lc/ = 5.73 
Modified Flory theoryll of as: 

- = 1.2762 (12) 

Combination 3: 
Kurata-Yamakawa theory12 of 1c/ (KY): 

= 0.547[1 - (1 + 3.9032)-0.4683] (13) 
Yamakawa-Tanaka theory13 of a,: 
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a: = 0.541 + 0.459(1 + 6 . 0 4 ~ ) O . ~ ~  (14) 

In order to use these theories for the estimation of A2 from intrinsic viscosity 
data, it is necessary to make use of equations which do not involve the various 
radii of gyration. The following relationships of Flory and Foxl4J5 are useful 
for this purpose: 

and 

The proportionality constant @O is considered below. It appears in all the 
two-parameter theories and is included in the KR model as  ell.^^^ Elimination 
of ( S2) 3/2 in eq. (5) leads to 

To estimate a value for A2, \t must be caculated according to one of the above 
theories. Taking combination 3 as an example, one first obtains a, from eq. (16). 
Substitution of this value of as into eq. (14) gives z ,  and Z is then obtained from 
eq. (7). This is then used in eq. (13) to estimate \t, and the latter value is finally 
put into eq. (17) to calculate Az. 

Various theoretical values of are available. However, a common value 
which is often obtained is 2.5 X loz3 (with [q] and ( S )  in cgs units).15 

It is not our intention here to discuss the validity of the various theories of 
polymer solution behavior. We are solely concerned with the efficiency of these 
models in the prediction of second virial coefficients using intrinsic viscosities 
as the input parameters. So far as we know, this application of these particular 
theories has not been considered explicitly before. 

RESULTS 

The theories mentioned above were used to predict second virial coefficients 
for about 140 polymer samples for which apparently reliable A2 values were lo- 
cated in the literature. In most cases, the samples selected were fractions with 
fairly sharp molecular weight distributions. The intrinsic viscosities were cal- 
culated from the appropriate Mark-Houwink relations: 

[q] = KMt  (18) 

The Mark-Houwink constants used are listed in Table I. 
It is not possible to present Az values calculated from all three two-parameter 

theories because of space limitations. Results from the Kurata-Yamakawa (KY) 
theory have been selected for illustrative purposes, while an overall comparison 
with the other two models is given below. 

Predicted and experimental A2 values obtained from the KY theory and the 
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A 
I I I I 

4.7 4.9 5.7 5.3 5.5 5.7 6.9 

lop M 

Fig. 1. Osmotic second virial coefficients for poly(methy1 methacrylate) in acetone: (0) experi- 
mentall'; (0) K R  (A) KY. The line joins experimental points. 

KR model are presented in Figures 1-18. Most of the experimental values are 
obtained from light scattering measurements. In general, the KFi model provides 
a somewhat better prediction than the KY theory, which estimates virial coef- 
ficients which are too small in most cases. This is especially apparent for 
lower-molecular-weight samples in Figures 2,3,6,8-13,16, and 17. In Figure 
4, however, which deals with very high-molecular-weight polymers, the KY theory 

log M 

Fig. 2. Light scattering second virial coefficients for poly(methy1 methacrylate) in butanone-2.22 
Symbols same as in Fig. 1. 

Y 
0 
4 

t 
0 
x 
(u 

U 
I 

Fig. 3. Light scattering second virial coefficients for poly(methy1 methacrylate) in nitroethane.22 
Symbols same as in Fig. 1. 
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predictions are almost exact. Some of the predicted A2 values from the KR 
theory are higher than experimental figures, as in Figures 14,15, and 18. 

4 r  

* *  

2 4 6 8 I0 12 14 - 0 

M w  x tV6 
Fig. 4. Light scattering second virial coefficients for high-molecular-weight polystyrenes in ben- 

~ e n e . ~ ~  Symbols same as in Fig. 1. 

'cm 5 1  4 
N 

5.2 5.3 5.4 5.5 5.6 5.7 5.8 
tog M 

Fig. 5. Light scattering second virial coefficients of poly(buty1 methacrylate-co-styrene) in bu- 
tan0ne-2.~~ Symbols same as in Fig. 1. 

l o g  M 

Fig. 6. Second virial coefficients from equilibrium sedimentation measurementP for polystyrenes 
in benzene. The predicted values are for light scattering. Symbols same as in Fig. 1. 
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41- 

(v I 

b 

X 

b 

I -  

~ 

5.3 5.5 5.7 5 9  6.1 6.3 6.5 6.1 69 

t o g  M 

Fig. 7. Light scattering second virial coefficients for high-molecular-weight poly(cu-methylstyrenes) 
in toluene.37 Symbols same as in Fig. 1. 

A further comparison of the two theories is provided by the osmotic pressure 
data of Vink40 for a variety of polymers in various solvents. These are generally 
high-concentration experimental points. The KR theory produces a noticeably 
better fit to the experimental A2 values than the KY model, as shown in Table 
11. 

A comparison of the predictions of the four methods is given in Figures 19-22 
which show plots of predicted versus experimental A2 values for all the systems 
examined. One can judge the merit of each prediction by noting the scatter about 
the line drawn through the origin with a slope of unity. The two-parameter 
theories appear to give poor predictions for experimental values of A2 greater 
than 3 X cm3.mol/g2. Generally speaking, this means that the two-pa- 
rameter theories give good predictions only if the molecular weight is greater than 
106. 

A quantitative comparison of the above theories can be obtained by calculating 
the average percentage error over the 140 experimental data examined. Data 
in which the Mark-Houwink constants are not applicable because the polymer 
has too low a molecular weight are not taken into consideration. An apparent 
aberrant data point at  log M = 5.7 in Figure 5 is also not used. The average 
percentage error for each theory is calculated according to 

n 

I 
2 *; 

A 

I I I I I I I J 
4.5 4.1 4.9 5.1 5.3 5.5 5.1 5.9 

log M 
Fig. 8. Light scattering second virial coefficients for lower-molecular-weight samples of poly(cu- 

methylstyrene) in tol~ene.3~ (The experimental A2 for molecular weight 39,300 has not been used 
because the original authors reported that its [v] was abnormal.) Symbols same as in Fig. 1. 
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. 
I I I I I I I 

4.- 

“ t i ,  I I I I ,  a 
5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 

log M 

Fig. 9. Light scattering second virial coefficients for poly(viny1 acetate) in butanone-2?6 Symbols 
same as in Fig. 1. 

N I experimental - predicted 1 c experimental 
(20) N 

where A’ is the number (= 140) of experimental data. (Note that only the ab- 
solute deviations between predicted and experimental A2 values are taken into 
account). 

1 average percentage error = 

2 ;; 4.9 5.1 5.3 5.5 5.7 5.9 6.1 6.3 

Oog M 

Fig. 10. Light scattering second virial coefficients for poly(methy1 methacrylate) in acetone.27 
Symbols same as in Fig. 1. 

r 
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0 

3- 0 

-A b-\ A 0 

A A I -  

I I I I I I 1 

1 I I I I I I I 1 1  
8.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 

top M 
Fig. 12. Light scattering second virial coefficients for poly(n-butyl methacrylate) in butanone-2.% 

Symbols same as in Fig. 1. 

The percent errors obtained for the KR, KY, FKO, and the MFKO theories 
are 15.6, 25.8, 32.9, and 22.3, respectively. 

DISCUSSION 
The above results show that the KR model gives generally good predictions 

of second virial coefficients for a variety of solvents and polymers with different 
molecular weights. This is convenient, since the estimation of virial coefficients 
involves simple mathematics in this case. 

I I I 1 I I I I 
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 

fog M 
Fig. 13. Light scattering second virial coefficients for poly(n-butyl methacrylate) in acetone.28 

Symbols same as in Fig. 

N 
'm 

2 
n 
E 
0 * P 
X 
N 

U 

1. 

Fig. 14. Light scattering second virial coefficients for polychloroprene in n-butyl acetate.39 
Symbols same as in Fig. I. 
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1 I I I I I I I (  
5.1 5.3 5.5 5.7 5.9 6.1 63  6.5 

log M 

Fig. 15. Light scattering second virial coefficients for polychloroprene in carbon tetrachl~ride.~~ 
Symbols same as in Fig. 1. 

The comparisons in this article are based on the use of intrinsic viscosities as 
input parameters. We are not concerned with the validity of eqs. (15) and (161, 
in general. However, since the two-parameter theories rely on these relation- 

I t  
I I I I I I I I 

4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 

log M 
Fig. 16. Light scattering second virial coefficients for poly(t -butyl acrylate) in b~tanone-2 .~~  

Symbols same as in Fig. 1. 

01 

- 3  A 

E 
0 2  

n 

52 5.4 5.6 5.8 6.0 6.2 6.4 
Log M 

Fig. 17. Light scattering second virial coefficients .for poly(p-methyl styrene) in toluene.31 
Symbols same as in Fig. 1. 
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N 

0 a .  9 . .  x r  
0 I I t 1  I I 
5.3 5.5 5.7 5.9 6.7 6.3 6.5 6.7 

log M 

Fig. 18. Light scattering second virial coefficients for poly(p-chlorostyrene) in toluene (upper 
line) and poly(p-bromostyrene) in toluene (lower line).32 Symbols same as in Fig. 1. 

ships, one should examine the possible improvements in prediction of experi- 
mental results when the parameters in these equations are adjusted judiciously. 
Equation (15) can be changed by using a lower value of the Flory universal con- 
stant @o, as this will increase the value of A2 estimated by the two-parameter 
models. An alternative value for this constant is %O = 2.1 X (in cgs units), 
which is an experimental value often quoted for polydisperse polymers.33 Also, 
the equality in eq. (16) can be replaced by4I 

(21) & 3 =  2 4 3  
7J a s .  

We have made these substitutions into the calculations, and the average 
percent errors are shown in Table 111. Under the last conditions shown the 
predictions of the KY theory are improved substantially, while those of the other 
two-parameter models are not altered for the better. The original Rudin model4 
used @o = 2.1 X 1021 (actually, the Flory constant labelled 4’ was set a t  63/2%0). 
Substitution of @O = 2.5 X 1021 into the formulas for hydrodynamic volume and 
cx produces A2 estimates with an average error of 16.8% for this model. 

K r i g b a ~ m ~ ~  suggested the following empirical relation between A2 and in- 
trinsic viscosities: 

TABLE I1 
Second Virial Coefficient from Vink’s Data40 

Molecular A2 X lo4 cm3.mol/g2 (osmotic) 
Polymer/Solvent weight Experimental KR Theory KY Theory 

PMMA/toluene 89,800 2.65 2.58 1.51 
PMMA/acetone 95,600 2.42 2.45 1.39 
PMMA/ethyl acetate 103,900 2.82 4.02 2.58 
PMMAbutanone-2 100,800 3.24 3.01 1.78 
PS/toluene 119,300 5.59 5.65 3.50 
PSbutanone-2 550,000 1.41 1.60 0.90 
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N 

* 
0 4 -  

0 

0 

o o o o o  0 

I 2 3 4 5 6 0 7 

EXPERIMENTAL A2 x 104cm3 rnd g-2 

Fig. 19. Comparison of predicted and experimental A2 values for all the systems studied. The 
predicted values are from the FKO theory. 

TABLE I11 
Average Percent Errors of Various Theories 

a. x 10-23, Relation between Average % error 
ces units a. and a, KR KY FKO M F K ~  

2.5 a, = a? 16.8 25.8 32.9 22.3 
2.1 ff, = ff? 15.6 18.6 30.4 21.6 
2.5 = ffy 16.8 21.5 31.5 21.5 
2.1 = &43 15.6 17.6 35.3 27.0 

With the data uszd in this study eq. (22) gives an average percent error of 24.9% 
with 90 = 2.1 X 1021 and an error of 19.2% with 9 0  = 2.5 X lo2' (in cgs units). 
This relation involves less computation than any of those considered here and 
produces estimates in reasonable accord with experimental values. 

The model described in this and the preceding article on this topic6 appears 

Fig. 20. Comparison of predicted and experimental A2 values for all the systems reported above. 
The predicted values are from the MFKO theory. 
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Fig. 21. Comparison of predicted and experimental A2 values for all the systems reported above. 
The predicted values are from the KY theory. 

to provide the best overall estimates of second virial coefficients for a variety of 
polymer-solvent combinations (cf. Table I1 and Fig. 22). It consists essentially 
of a calculation of a concentration-dependent equivalent hydrodynamic volume 
for a solvated polymer coil and use of this volume in a primitive statistical me- 
chanical theory for virial coefficients of hard sphere suspensions. It cannot 
possibly accord with all the characteristics of real polymer solutions, but it can 
nevertheless serve as a very useful predictive tool despite this limitation. 

We have used a model proposed by one of us4 to estimate the equivalent di- 
mensions of polymers in solution. Any other theory which predicts these di- 
mensions correctly could be employed equally as well to provide input data for 
the statistical mechanical dilute suspension model.16 Thus, it is expected3 that 
replacement of Rudin’s model with Yamakawa’s expressions for the concen- 
tration dependence of the sizes of equivalent hydrodynamic spheres2 would 
produce equivalent A2 values with eqs. (1) or (2) and eq. (3). 

0 O / ? 6 -  
0 - e 5 -  

3 

2 3 -  

* 4 -  
Q 
x 

0 

E 2 -  

I I I I I I t 
I 2 3 4 5 6 r 

EXPERIMENTAL A2 x lo4 cm3 mot g-2 

r 

? 6  
0 - 
e 5  

3 

2 3  

* 4  
Q 
x 

0 

E 2  

0 I 2 3 4 5 6 r 
EXPERIMENTAL A2 x lo4 cm3 mot g-2 

Fig. 22. Comparison of predicted and experimental A2 values for all the systems reported above. 
The predicted values are from the KR theory given in this article. 
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Since the present method simulates the results of the actual experiment from 
which A2 is derived, it can also be used to predict colligative properties or tur- 
bidity of polymer solutions, as outlined earlier6 for osmotic pressure values in 
particular. 

This work was supported by the Natural Sciences and Engineering Research Council of 
Canada. 

References 

1. H. Yamakawa, Modern Theory of Polymer Solutions, Harper and Row, New York, 1971. 
2. H. Yamakawa, J. Chem. Phys., 43,1334 (1965). 
3. H. K. Mahabadi and A. Rudin, Polym. J. (Japan), 11,123 (1979). 
4. A. Rudin and R. A. Wagner, J. Appl. Polym. Sci., 20,1483 (1976). 
5. C. M. Kok and A. Rudin, Makromol. Chem., to appear. 
6. C. M. Kok and A. Rudin, J. Appl. Polym. Sci., 26,3575 (1981). 
7. A. Rudin and R. A. Wagner, J. Appl. Polym. Sci., 19,3361 (1975). 
8. P. J. Flory and W. R. Krigbaum, J. Chem. Phys., 18.1086 (1950); T. A. Orofino and P. J. Flory, 

9. P. J. Flory, J. Chem Phys., 17,303 (1949). 
ibid., 26,1067 (1957). 

10. W. H. Stockmayer, Makromol. Chem., 35,54 (1960). 
11. W. H. Stockmayer, J. Polym. Sci., 15,595 (1955). 
12. H. Yamakawa, J. Chem. Phys., 48,2103 (1968). 
13. H. Yamakawa and G. Tanaka, J. Chem. Phys., 47,3991 (1967). 
14. P. J. Flory, J. Chem. Phys., 17,303 (1949). 
15. P. J. Flory and T. G. Fox, J. Am. Chem. SOC., 73,1904 (1951). 
16. B. H. Zimm, J. Chem. Phys., 14,164 (1946). 
17. T. G. Fox, J. B. Kinsinger, H. F. Mason, and E. M. Schuele, Polymer (London), 10, 71 

18. A. F. V. Eriksson, Acta Chem. Scand., 10,378 (1956). 
19. E. Cohn-Ginsberg, T. G. Fox, and H. F. Mason, Polymer (London), 10,97 (1962). 
20. P. Outer, C. I. Carr, and B. A. Zimm, J. Chem. Phys., 18,830 (1950). 
21. J. 0 t h  and Y. Desreux, Bull. SOC. Chim. Belg., 18,830 (1954). 
22. E. F. Casassa and W. H. Stockmayer, Polymer, 3,53 (1962). 
23. T. A. Orofino and F. Wenger, J. Phys. Chem., 67,566 (1963). 
24. K. S. V. Srinivasan and M. Santappa, J.  Polym. Sci. Polym. Phys. 11,331 (1973). 
25. I. Noda, K. Mizutai, T. Kato, T. Fujimoto, and M. Nagasawa, Macromolecules, 3, 787 

26. A. R. Shultz, J.  Am. Chem. SOC., 76,3423 (1954). 
27. J. Bischoff and V. Desreux, Bull. SOC. Chim. Belges, 61,lO (1952). 
28. R. Van Leempont and R. Stein, J. Polym. Sci., Al,  985 (1963). 
29. K. Kawahara, T. Norisuye, and H. Fujita, J. Chem. Phys., 49,4339 (1968). 
30. R. Jerome and V. Desreux, Eur. Polym. J., 6,411 (1970). 
31. G. Tanaka, S. Imai, and H. Yamakawa, J.  Chem. Phys., 52,2639 (1970). 
32. Y. Noguchi, A. Aoki, G. Tanaka, and H. Yamakawa, J. Chem. Phys., 52,2651 (1970). 
33. M. Kurata and W. H. Stockmayer, Fortschr. Hochpolym. Forsch., 3,196 (1963). 
34. S. N. Chinai and R. A. Guzzi, J. Polym. Sci., 21,417 (1956). 
35. M. Fukuda, M. Fukutoni, Y. Kato, and T. Hashimoto, J. Polym. Sci. Polym. Phys., 12,871 

36. S. G. Chu and P. Munk, J. Polym. Sci. Polym. Phys., 15,1163 (1977). 
37. T. Kato, M. Miyaso, I. Noda, T. Fujimoto, and M. Nagasawa, Macromolecules, 3, 777 

38. G. V. Schulz and H. Bauman, Makromol. Chem., 114,122 (1968). 
39. T. Norisuye, K. Kawahara, A. Teramoto, and H. Fujita, J. Chem. Phys., 49,4336 (1968). 
40. H. Vink, Eur. Polym. J., 10,149 (1974). 
41. M. Kurata and H. Yamakawa, J. Chem. Phys., 29,311 (1958). 
42. W. R. Krigbaum, J.  Polym. Sci.,  18,315 (1955). 

(1962). 

(1970). 

(1974). 

(1970). 

Received November 10,1980 
Accepted December 18,1980 


